Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника А

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника АВК к площади четырехугольника КРСМ.

Прикрепите рисунок, пожалуйста, и пишите как можно подробнее, спасибо).

    Тогда  S(KBP)/S(МВС) = 1/ 6, а значит

    S(KBP)=1/2*ВК*ВР*sinКВР

     * то S(ABK)=S(AKM)=S(ABM)/2=S(MBC)/2

    S(МВС)=1/2*ВМ*ВС*sinКВР=1/2*2ВК*3ВР*sinКВР=3*ВК*ВР*sinКВР

    Сравниваем строчки, помеченные * и получаем  S(ABK) : S(KPСМ) = 2: 6/15 = 5/12

    Т.к. ВМ - медиана треугольника АВС, то S(ABM)=S(MBC)

     * S(KPСМ)/S(МВС) = 5/6.

    Т.к. АК - медиана треугольника АВМ,

    Проведем МД так, что МД || КР, тогда КР - средняя линия в треуг-ке ВДМ, а МД - средняя линия в треуг-ке АРС, значит ВР=РД=ДС, т.е. ВС=3ВР. По условию ВК=КМ, т.е. ВМ=2ВК. Тогда

  • Отсутствие рисунка компенсирует подробность изложения :)) 

     

Добавить комментарий

*

1 + 4 =